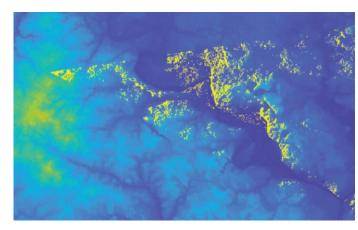
ПРОГРАММНО-АППАРАТНЫЙ ОПТИКО-ЭЛЕКТРОННЫЙ КОМПЛЕКС С ПОДДЕРЖКОЙ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

СИСТЕМА АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ РАЗВЕДКОЙ И ОПТИЧЕСКИМ НАБЛЮДЕНИЕМ


САУ РОН

МНОГОФУНКЦИОНАЛЬНЫЙ ОПТИКО-ЭЛЕКТРОННЫЙ КОМПЛЕКС С ИИ

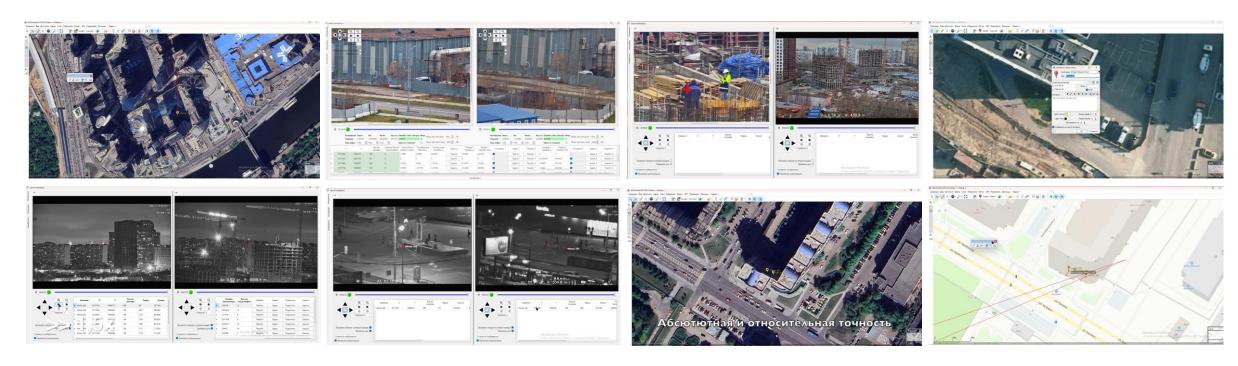
САУ РОН – Система автоматизированного управления разведкой и оптическим наблюдением – программно-аппаратный комплекс может объединяться в комплекс, в том числе с коммерческими купольными камерами, содействуя выполнению разведывательно-информационных задач.

Высококачественная оптика, цифровая обработка видеопотока и применение алгоритмов искусственного интеллекта позволяют в полуавтоматическом режиме обеспечить решение задач, ранее не доступных для оптико-электронных систем, обеспечивая эффективное наблюдение на дальностях до 30 км и выше.

ФУНКЦИЯ ВЫСОКОТОЧНОГО ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕТОДОМ ТРИАНГУЛЯЦИИ И ПРИВЯЗКИ К ГЕОПОДОСНОВЕ

Топографическая карта местности, отмечены точки, видимые на кадре

Отображение полей зрения камер на картах (типа SAS Planet)



Совмещение топографической карты с картами с указанием полей зрения

Наложение рельефа местности на кадр широкоугольной камеры

САУ РОН АртЭкспресс: УНИВЕРСАЛЬНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Система высокоточного определения координат целей (триангуляционным методом) на больших расстояниях с последующей передачей координат в интересах артиллерийских расчетов и иных целях.

Система САУ РОН АртЭкспресс состоит из нескольких распределенных поворотных оптических камер высокого разрешения (как САУ РОН, так и купольных), радиомостов для передачи видеоданных и управляющего программно-аппаратного комплекса.

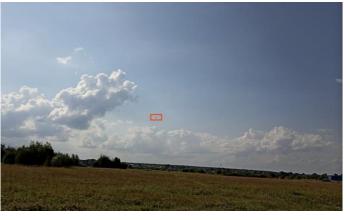
- Калибровка камер к местности и взаимная калибровка стереобазиса с определением их высокоточных координат и углов в географической системе координат СК-42 (без ГНСС)
- Определение высокоточных направлений на объекты на видеокадрах камер и грубых координат объекта на местности (по пересечению оси на объект с топокартой)
- Синхронный поворот нескольких камер
- Определение точных координат триангуляционным методом по визированию объекта
- Передача координат на позицию во внешние системы

ИСПОЛЬЗОВАНИЕ НЕЙРОСЕТЕВЫХ РЕШЕНИЙ ДЛЯ ОБНАРУЖЕНИЯ БПЛА

- САУ РОН инновационное решение для противодействия дронам и противовоздушной защиты гражданских объектов. Может быть оперативно развернута автономно или в составе интегрированных технических систем охраны. Система легко интегрируется и имеет ряд готовых к использованию оптических модулей и решений, позволяющих настраивать ее для каждого объекта.
- В отличие от радиоэлектронных средств системы САУ РОН не требуют специальных разрешений и могут обнаруживать дроны и иные летательные аппараты даже в тех случаях, когда их полет осуществляется в режиме радиомолчания.
- Системы САУ РОН состоят из высокочувствительных оптикоэлектронных комплексов, PTZ-камер видеонаблюдения, тепловизионных камер (SWIR, MWIR, LWIR) и специализированного программно-аппаратного комплекса. ПАК САУ РОН позволяет превращать практически любую систему камер в автономный распределенный сенсорный комплекс.

- Вся передача и обработка видеоданных осуществляется в цифровом виде, с применением интеллектуальных алгоритмов. По требованию заказчиков могут быть разработаны дополнительные нейросетевые решения. Возможна интеграция с готовыми алгоритмами сторонних разработчиков.
- В целях ускорения обучения нейросетей идет отработка механизма смешения доступных видеоданных с фотореалистичными синтетическими изображениями. Целью нейросетевых алгоритмов с глубоким обучением является выявление движения и траекторий полетов, выделение летательных аппаратов на малоконтрастном фоне, снижением объема ложных срабатываний за счет классификации (фильтрации изображений летящих птиц).
- Данные, получаемые в системах САУ РОН, могут в дальнейшем использоваться для обнаружения дронов, наведения и корректировки систем физического воздействия на дроны.

НЕЙРОСЕТЕВЫЕ МЕХАНИЗМЫ ОТСЛЕЖИВАНИЯ БПЛА В НЕБЕ (функция в разработке)


Задача 1. Определение движущихся объектов на высококонтрастном и малоконтрастном фоне

Задача 2. Обнаружение БПЛА в условиях слабой освещенности (сумерки, ночь)

Задача 3. Однозначная идентификация БПЛА и фильтрация полетов птиц по характерной траектории

Задача 4. Обнаружение БПЛА на расстояния >1 км и выше с увязкой с иными инструментами

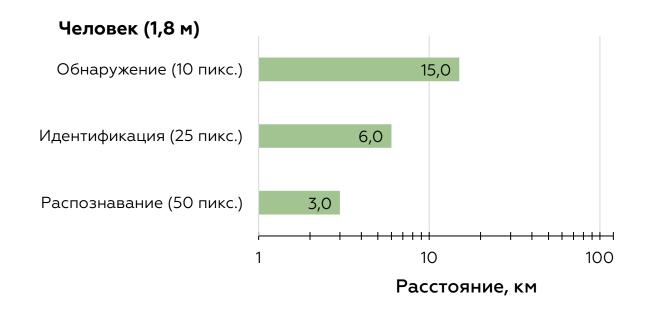
ОПТИКО-ЭЛЕКТРОННАЯ СТАНЦИЯ САУ РОН

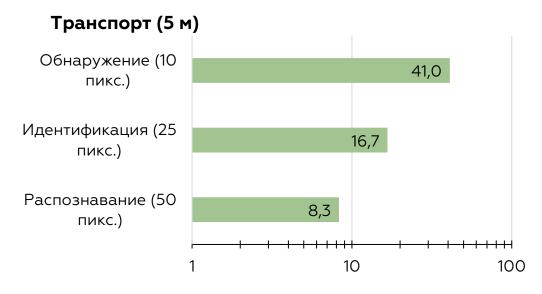
Узкоугольная поворотная телескопическая камера для дальнего и детализированного наблюдения

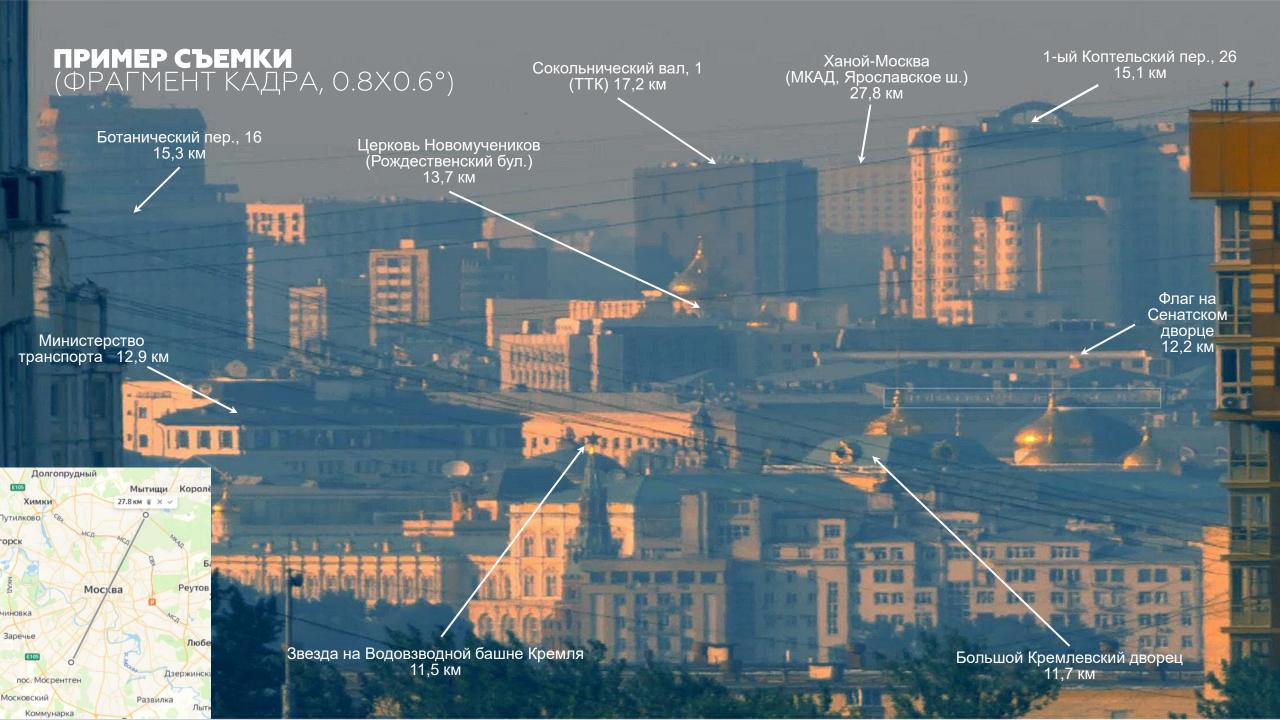
Широкоугольная камера для обеспечения функций автоматизированного мониторинга

Защита объективов от бликов и пыли

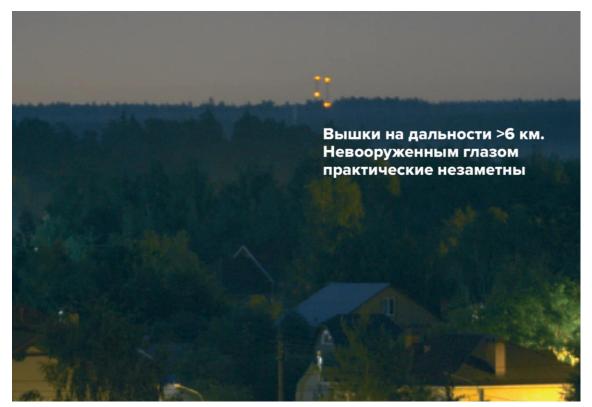
Дополнительное оборудование, синхронизируемое с основным (ИК-камера, УФ-камера, специальная оптика)

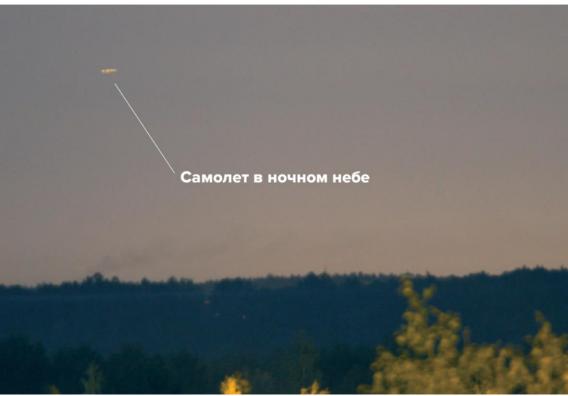

Блок вычислительной аппаратуры для управления комплексом и нейросетевыми функциями


Тренога геодезического класса для обеспечения устойчивой установки и стабилизации


Возможна установка комплекса на поворотный механизм для расширения угла наблюдения

ТЕОРЕТИЧЕСКИЕ РАССТОЯНИЯ НАБЛЮДЕНИЯ


Расчет по методике DRI (без учета факторов атмосферной видимости)



РЕЖИМ ЦВЕТНОГО НОЧНОГО ВИДЕНИЯ

Возможно дооборудование САУ РОН тепловизионной камерой 1280x768 (неохлаждаемая) или 640x512 (охлаждаемая), что позволяет расширить функционал компелкса. Также возможна интеграция с коммерческими купольными РТZ-камерами, в том числе с использованием программно-аппаратного комплекса для определения координат без использования дальномера САУ РОН АртЭкспресс. В разработке модификация комплекса для использования в составе БПЛА.